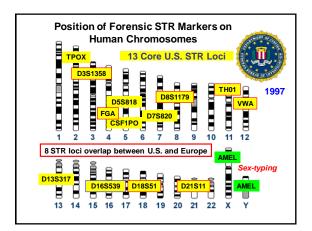
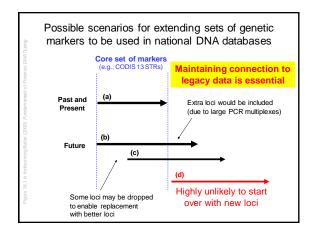


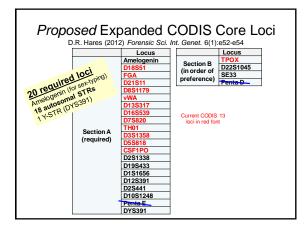
Expanding CODIS Core Loci

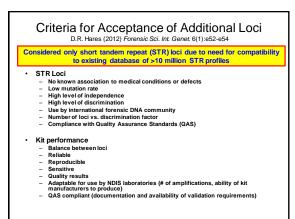

Additional STR Loci in the Future?

- Will be needed for more complex kinship analyses and extended applications

 Example: Y-STRs needed for familial searching
- · Immigration testing needs more than 13 STRs
- · Larger DNA databases will require more loci

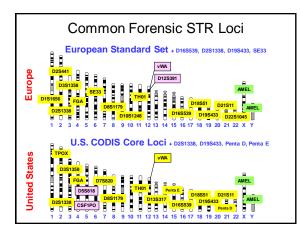




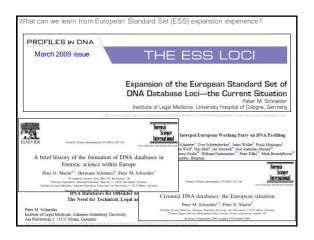


Three major reasons for expanding the CODIS core loci in the United States D.R. Hares (2012) Forensic Sci. Int. Genet. 6(1):e52-e54

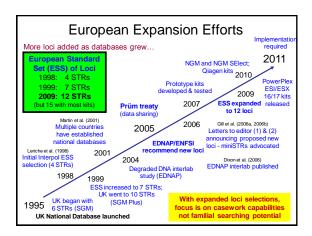
- To reduce the likelihood of adventitious matches as the number of profiles stored at NDIS continues to increase each year
- To increase international compatibility to assist law enforcement data sharing efforts
- To increase discrimination power to aid missing persons cases

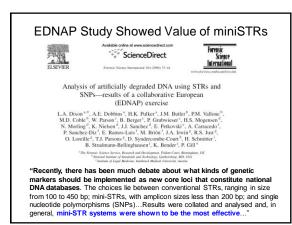

Adventitious Matches

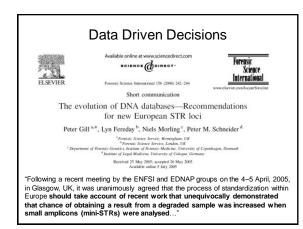
- The only published account of a false match from a DNA database came in 1999 when the UK database then consisting of 660,000 profiles with only 6 STR loci (SGM assay) lead to a "hit" between two individuals whose 6-locus random match probability was 1 in 37 million (R. Willing, USA Today, Feb 8, 2000; "Mismatch calls DNA test into question").
- Further testing with four additional STRs (SGM Plus loci) showed that the samples were from different individuals. The UK expanded the number of core loci from 6 to 10 with the adoption of the SGM Plus kit to try and prevent another adventitious match.
- The growth of DNA databases necessitates the inclusion of additional loci to avoid this problem.


For further information, see D.N.A. Box 8.3 in Butler, J.M. (2012) Advanced Topics in Forensic DNA Typing: Methodology, p. 251

International Comparability Currently there are 24 autosomal STR markers present in commercial kits <u>U.S.</u> Europe TPOX CSF1PO D5S818 D7S820 D13S317 FGA ESS = European Standard Set FGA WA D3S1358 13 CODIS loci FGA WVA D3S1358 D8S1179 D18S51 D8S1179 D18S51 D21S11 7 ESS loci D21S11 TH01 TH01 D16S539 D16S539 D2S1338 D19S433 D2S1338 D19S433 Penta D Penta E D12S391 D1S1656 D2S441 D10S1248 D22S1045 SE33 5 loci adopted in 2009 3 miniSTR loci to expand to 12 ESS loci developed at NIST Core locus for Germany Locus used in China 🔸 D6S1043







Lessons from European ESS Expansion

- · Data studies should drive decisions
- Interlaboratory study with degraded DNA (Dixon et al. 2006 article was key)
 Casework capabilities are a primary goal
- miniSTRs and desire for kits with ability to overcome inhibitors
 Initial locus selection announced through Letters to the Editor of the leading forensic DNA journal (Gill et al. 2006a, 2006b)
- Companies responded with prototype kits for evaluation
- Expanded ESS loci were selected and voted upon after data review by ENFSI labs (4 years after initial recommendations were made)
- EU adopted recommendations of ENFSI
- · Commercial kits became available to meet expanded ESS requirements
- Population data gathered and software developed
- · European labs must be compliant by Nov 30, 2011 (2 years after
- adoption)

 Casework capabilities not familial searching potential were the intent of
- Casework capabilities not familial searching potential were the intent of the core loci selection

Characterizing New STR Loci

Main Points:

- In April 2011, the FBI announced plans to expand the core loci for the U.S. beyond the current 13 CODIS STRs
- Our group is collecting U.S. population data on new loci and characterizing them to aid understanding of various marker combinations
- · We are collecting all available information from the literature on the 24 commonly used autosomal STR loci
- Presentations/Publications:
- AAFS 2011 presentation Hill et al (2011) FSI Genetics 5(4): 269-275
- Hares (2012) Expanding the U.S. core loci ... FSI Genetics 6(1): e52-e54 Butler & Hill (2012) Forensic Sci Rev 24(1): 15-26

Article in the January 2012 issue of Forensic Science Review

Available at http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Biology and Genetics of New Autosomal STR Loci **Useful for Forensic DNA Analysis**

REFERENCE: Butler JM, Hill CR: Biology and genetics of new autosomal STR loci useful for forensic DNA analysis; Forensic Sci Rev 24:15; 2012.

ABSTRACT: Short tandem repeats (STRs) are regions of tandemly repeated DNA segments found throughout the human genome that vary in length (through insertion, deletion, or mutation) with a core repeated DNA sequence. Forensic laboratories commonly use tetranucleotide repeats, containing a four base pair (4-bp) repeat structure such as GATA. In 1997, the Federal Bureau of Investigation (FBI) Laboratory selected 13 STR loci that form the backbone of the U.S. national DNA database. Building on the European expansion in 2009, the FBI announced plansis nApril/2011 to expand the U.S. coreloci to as many as 20 STRs to enable more global DNA data sharing. Commercial STR tits enable consistency in marker use and allele nomenchature between laboratories and help improve quality control. The STRBase website, maintained by the U.S. National Institute of Standards and Technology (NIST), contains helpful information on STR markers used in human identity testing.

Key Words: Autosomal genetic markers, CODIS STRs, core loci, DNA typing, European Standard Set, expanded U.S. core loci, short tandem repeat (STR), STR kits.

Discusses the 24 autosomal STR loci available in commercial kits

	The 11 STR Loci Beyond the CODIS 13						
	STR Locus		Repeat Motif	Allele Range*	#Alleles*		
	D2S1338	2q35	TGCC/TTCC	10 to 31	40		
	D19S433	19q12	AAGG/TAGG	5.2 to 20	36		
	Penta D	21q22.3	AAAGA	1.1 to 19	50		
	Penta E	15q26.2	AAAGA	5 to 32	53		
<u>o</u> ci	D1S1656	1q42	TAGA	8 to 20.3	25		
ean	D12S391	12p13.2	AGAT/AGAC	13 to 27.2	52		
new European	D2S441	2p14	TCTA/TCAA	8 to 17	22		
₹	D10S1248	10q26.3	GGAA	7 to 19	13		
5 ne	D22S1045	22q12.3	ATT	7 to 20	14		
	SE33	6q14	AAAG‡	3 to 49	178		
	D6S1043	6q15	AGAT/AGAC	8 to 25	25		
Allele range and number of observed alleles from Appendix 1, J.M. Butler (2012) Advanced Topics in Forensic DNA Typing: Methodology; ⁺ SE33 alleles have complex repeat structure							

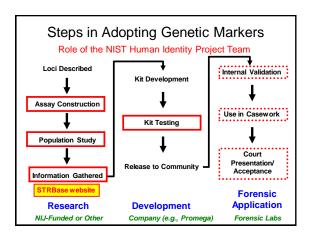
	25 A	lleles	Repor	ted ir	the Literature for	D1S1656
	Allele (Repeat #)	Promega ESX 17	Promega ESI 17	ABI NGM	Repeat Structure [TAGA] ₄ [TGA] _{0.1} [TAGA] ₀ TAGG[TG] ₅	Reference
	8	133 bp	222 bp	171 bp	[TAGA] ₈ [TG] ₅	Phillips et al. (2010)
	_	137 bp	226 bp	175 bp	[TAGA] ₉ [TG] ₅	Phillips et al. (2010)
-	10 (a) 10 (b)	141 bp 141 bp	230 bp 230 bp	179 bp 179 bp	[TAGA] ₁₀ [TG] ₅ [TAGA] ₁₀ TAGG[TG] ₅	Lareu et al. (1998) Phillips et al. (2010)
red	10 (b)					
		145 bp	234 bp	183 bp	[TAGA] ₁₁ [TG] ₅	Lareu et al. (1998)
j,	12 (a)	149 bp	238 bp	187 bp	[TAGA] ₁₂ [TG]₅	Lareu et al. (1998)
8	12 (b)	149 bp	238 bp	187 bp	[TAGA] ₁₁ TAGG[TG] ₅	Lareu et al. (1998)
circled	13 (a)	153 bp	242 bp	191 bp	[TAGA] ₁₂ TAGG[TG] ₅	Lareu et al. (1998)
높	13 (b)	153 bp	242 bp	191 bp	[TAGA] ₁₃ [TG] ₅	Phillips et al. (2010)
	13.3	156 bp	245 bp	194 bp	[TAGA]1TGA[TAGA]11TAGG[TG]5	Phillips et al. (2010)
alleles	14 (a)	157 bp	246 bp	195 bp	[TAGA] ₁₃ TAGG[TG] ₅	Lareu et al. (1998)
9	14 (b)	157 bp	246 bp	195 bp	[TAGA] ₁₄ [TG]₅	Phillips et al. (2010)
	14.3	160 bp	249 bp	198 bp	[TAGA] ₄ TGA[TAGA] ₉ TAGG[TG] ₅	Phillips et al. (2010)
σ	15	161 bp	250 bp	199 bp	[TAGA] ₁₄ TAGG[TG] ₅	Lareu et al. (1998)
8	15.3	164 bp	253 bp	202 bp	[TAGA]₄TGA[TAGA]10TAGG[TG]5	Lareu et al. (1998)
observed	16	165 bp	254 bp	203 bp	[TAGA] ₁₅ TAGG[TG] ₅	Lareu et al. (1998)
Š.	16.3	168 bp	257 bp	206 bp	[TAGA]₄TGA[TAGA] ₁₁ TAGG[TG]₅	Lareu et al. (1998)
6	17	169 bp	258 bp	207 bp	[TAGA] ₁₆ TAGG[TG] ₅	Lareu et al. (1998)
ь.	17.1	170 bp	259 bp	208 bp	Not published	Schröer et al. (2000)
5 NIST	17.3	172 bp	261 bp	210 bp	[TAGA] ₄ TGA[TAGA] ₁₂ TAGG[TG] ₅	Lareu et al. (1998)
2	18	173 bp	262 bp	211 bp	[TAGA] ₁₇ TAGG[TG] ₅	Phillips et al. (2010)
15	18.3	176 bp	265 bp	214 bp	[TAGA] ₄ TGA[TAGA] ₁₃ TAGG[TG] ₅	Lareu et al. (1998)
		177 bp	266 bp	215 bp	Not published	Asamura et al. (2008)
	19.3	180 bp	269 bp	218 bp	[TAGA] ₄ TGA[TAGA] ₁₄ TAGG[TG] ₅	Lareu et al. (1998)
	20.3	184 bp	273 bp	222 bp	Not published	Gamero et al. (2000)
	from Appe	ndix 1, J.M. B	utler (2011) Ac	ivanced Top	pics in Forensic DNA Typing: Methodology	

NIST U.S. Population Allele Frequencies								
D1S1656 (15 different alleles)								
	African American	Caucasian	Hispanic	N = 938				
Allele	(N = 341)	(N = 361)	(N = 236)					
10	0.01433	0.00277	0.00630	(only unrelated				
11	0.04871	0.07756	0.02731	samples used;				
12	0.06304	0.11773	0.08824	fathers removed				
<u> </u>	0.10029	0.06648	0.11555	from this sample set)				
Seine 14 ⊫e 14.3	0.25788	0.07895	0.11765	< 5/2N				
🚆 14.3	0.00716	0.00277	0.00420					
	0.15616	0.14820	0.13866					
15 15.3 16 16.3	0.03009	0.05817	0.05042					
₽ 16	0.11032	0.13573	0.17437					
	0.10029	0.06094	0.05462					
₩° 17	0.02865	0.04709	0.04202					
17.3	0.05014	0.13296	0.14496					
18	0.00287	0.00554	0.00630					
18.3	0.02436	0.05125	0.02521					
19.3	0.00573	0.01385	0.00420	J				

D1S1656 Characteristics

- · 15 alleles observed
- 92 genotypes observed
- >89% heterozygotes (heterozygosity = 0.8934)
- 0.0220 Probability of Identity (P_i)

$$P_I = \sum (genotype \ frequencies)^2$$


These values have been calculated for all 24 STR loci across the U.S. population samples examined

Loci so	rted on Prob	ability of Ident	ity (P _i) val	ues	23 STR Loci present in
	Alleles	Genotypes	Het.	P _I value	STR kits rank ordered by
STR Locus	Observed	Observed	(obs)	N = 938	their variability
SE33	53	292	0.9360	0.0069	
Penta E*	20	114	0.8799	0.0177	
D2S1338	13	68	0.8785	0.0219	Better for mixtures
D1S1656	15	92	0.8934	0.0220	(more alleles seen)
D18S51	21	91	0.8689	0.0256	
D12S391	23	110	0.8795	0.0257	361 Caucasians
FGA	26	93	0.8742	0.0299	341 African Americans
Penta D*	16	71	0.8754	0.0356	236 Hispanics
D21S11	25	81	0.8358	0.0410	
D19S433	16	76	0.8124	0.0561	There are several loci
D8S1179	11	45	0.7878	0.0582	more polymorphic than
vWA	11	38	0.8060	0.0622	the current CODIS 13
D7S820	11	32	0.8070	0.0734	STRs
TH01	8	24	0.7580	0.0784	
D16S539	9	28	0.7825	0.0784	N = 938
D13S317	8	29	0.7655	0.0812	(only unrelated
D10S1248	12	39	0.7825	0.0837	samples used)
D2S441	14	41	0.7772	0.0855	
D3S1358	11	30	0.7569	0.0873	Pottos for kinchin
D22S1045	11	42	0.7697	0.0933	Better for kinship (low mutation rate)
CSF1PO	9	30	0.7537	0.1071	(low mutation rate)
D5S818	9	34	0.7164	0.1192	*Penta D & Penta E run
TPOX	9	28	0.6983	0.1283	on subset (N = 658)

Determination of Additional CODIS Core Loci

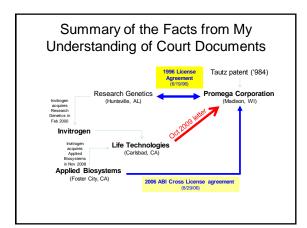
D.R. Hares (2012) Expanding the CODIS Core Loci in the United States. Forensic Sci. Int. Genet. 6: e52-e54 Addendum to expanding the CODIS core loci in the United States, Forensic Sci. Int. Genet. (2012) doi:10.1016/j.fsigen.2012.01.003

Form a Working Group (WG) to discuss initial selection	Establishes target goals	CODIS Core Loci Working Group with FBI Chair and 5 members; Web meetings	May 2010 - present
Announce proposed additional CODIS core loci	Sets desired target goals and informs manufacturers	WG Chair; Publish proposed listing of CODIS core loci	April 2011 online (published Jan 2012)
Ongoing Progress Reports	Provides updates for DNA community	WG Chair; Present updates on status of CODIS Core Loci project at meetings	2010-2012
Implementation Considerations & Strategy	Identify issues for implementation and timeline	WG	June 2011 - present
Manufacturers develop prototype kits	Creates tools to meet target goals	Manufacturers; Provide status reports to WG for timeline	2011-2012
Test and validate prototype kits	Examines if target goals can be met	Validation Laboratories; Follow QAS compliant validation plan	Beginning in 2012
Review and evaluate data from validation	Evaluates if desired performance is obtained	NIST, SWGDAM and FBI; Provide feedback, if any, to Manufacturers	In conjunction with and at the conclusion of validation
Selection of new CODIS core loci	Allows protocols to be established	FBI; seek input from DNA community and stakeholders; Notify Congress	After evaluation of validation data and kit production factor
Implementation of new CODIS core loci at the National DNA Index System	Enables target goals to be met	All NDIS-participating labs	- 24 months after selection new CODIS core loci

Recent Court Decision Impacting Sale of STR Typing Kits

Disclaimer: The information contained herein is only as accurate as my understanding of the information available to me at the time this presentation was given. Things are still evolving with this case...

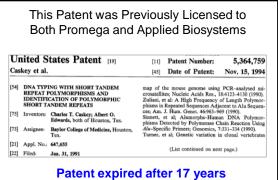
Notice on ABI STR Kits


IMPORTANT NOTICE

The UNITED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF WISCONSIN ruled that certain products (listed below) sold by Life Technologies Corporation ("Life") can only be used by customers for forensic and paternity uses ("Licensed Use"). Specifically, the Court held that the license Life holds from Promega Corporation ("Promega") does not include the following applications: (1) chimerism (which involves determining the relative amount present of two different types of DNA); (2) classifying molar specimens (which involves determinating whether a mole is present and what type it is; (3) cell line authentication (which involves a determination of whether two cell lines are unique); (4) determination of fetal sex; (5) cancer analysis; (6) genetic research; (7) non-casework-related forensic applications such as general research in forensics or teaching and training of persons not employed in a forensic laboratory; (8) maternal cell contamination; and (9) sample tracking. Accordingly, this notice replaces any other label license or use statement for the listed products only as those labels or statements relate to the use of such products under the Promega license. Any other restrictions, such as regulatory restrictions, related to the use of these products are not affected by this notice. If a customer has any question regarding whether their intended use is within or outside the Licensed Use, please contact LicenseQuery@lifetech.com.

The following products are subject to this notice: 4322288 AmpFtSTR® Identifiler® PCR Amplification Kit ...

The following products are subject to this notice:
4322288 AmpFℓSTR® Identifiler® PCR Amplification Kit
4408580 AmpFℓSTR® Identifiler® Direct PCR Amplification Kit (1000 tests)
4467831 AmpFℓSTR® Identifiler® Direct PCR Amplification Kit (200 tests)
4427368 AmpF{STR® Identifiler® Plus PCR Amplification Kit
4373872 AmpFℓSTR® MiniFiler™ PCR Amplification Kit
4415021 AmpFℓSTR® NGM™ PCR Amplification Kit (1000 rxn)
4415020 AmpFℓSTR® NGM™ PCR Amplification Kit (200 rxn)
4457890 AmpFℓSTR® NGM SElect™ PCR Amplification Kit (1000 rxn)
4457889 AmpFℓSTR® NGM SElect™ PCR Amplification Kit (200 rxn)
403038 AmpFℓSTR® Profiler® PCR Amplification Kit
4303326 AmpF{STR® Profiler Plus® PCR Amplification Kit
4330284 AmpFℓSTR® Profiler Plus® ID PCR Amplification Kit
4305246 AmpF{STR® COfiler® PCR Amplification Kit
4307133 AmpF{STR® SGM Plus® PCR Amplification Kit
4382699 AmpFℓSTR® SEfiler Plus™ PCR Amplification Kit
4305979 AmpF{STR® Profiler Plus® and AmpFLSTR® Cofiler® Kits
4330621 AmpF{STR® Profiler Plus® ID Kit and AmpFLSTR® Cofiler ® Kit
4359513 AmpF{STR® Yfiler® PCR Amplification Kit
4382306 AmpFℓSTR® Sinofiler™ PCR Amplification Kit
4382324 AmpFℓSTR® Sinofiler™ PCR Amplification Kit Primer Set
•



	(45) Date of Patent: Mar. 7, 2006
Schumm et al. (2) United States Patent Schumm et al. (2) United States Patent Schumm et al. (2) United States (2) Reissued Patent Jäckle et al. (4) PROCESS FOR ANALYZING LENGTH POLYMORPHISMS IN DAA REGIONS (25) Invatures. Herber Jäckle, Contingen (DE); Diehend Tater, Zikku (2014).	(45) Date of Patent: *Apr. 24, 2001 3350 (16) Patent No.: US 6,479,235 B1 \$235 (45) Date of Patent: Nov. 12, 2002 \$235 (16) Patent No.: US 7,008,771 B1 \$771 (45) Date of Patent: Mar. 7, 2006 \$771
Schumm et al. (1) United States Patent Schumm et al. (19) United States (12) Reissned Patent (13) Jäckle et al. (14) Jäckle tal. (15) PROCESS FOR AVALYZING LENGTH POLYMORPHISMS IN DNA REGIONS (15) Inventors: Herber Jäck, Cellingen (DE), Diehend Taur, Klan (DE).	(45) Date of Patent: Nov. 12, 2002 (10) Patent No.: US 7,008,771 B1 (45) Date of Patent: Mar. 7, 2006
Schumm et al. (19) United States (12) Reissued Patent (10) Jäckle et al. (45) (54) PBOCESS FOR ANALYZING LENGTH POLYMORPHISMS IN DAA REGIONS (75) Inventers: Herbert Jäckle, Göningen (DE): Diedend Tamer, Köln (DE):	(45) Date of Patent: Mar. 7, 2006
(27) Reissued Patent (10) Jäckle et al. (45) (54) PROCESS FOR ANALYZING LESGTH POLINORPHILISM IS DAYA REGIONS (75) Investors Herbert Jäckle, Göttigger (DE), Diehend Tatry, Cola (DE)	
(75) Inventors: Herbert Jäckle, Göttingen (DE); Diethard Tautz, Köln (DE)	Patent Number: US RE37,984 E '984 Date of Reissued Patent: Feb. 11, 2003
	H. Chen et al., Human Matation, 4:208–211 (1994). X. Y. Hauge et al., Human Molecular Genetics, 2(4):411–415 (1993). J. M. Hiti et al., Nucleic Acids Research, 1996, vol. 24, No. 12, pp. 2429–2434.
Forderung der Wissenschaften e.V., Gottingen (DE)	 D. Tautz, Nucleic Acids Research, 1989, vol. 17, No. 16, pp. 6463–6471. A. Edwards et al., Trans. Assoc. Am. Phys., 102nd Session,
 (21) Appl. No.: 09/591,383 (22) Filed: Jun. 9, 2000 	vol. 102:185–194 (1989). M. Litt et al., Am. J. Hum. Genetics, 1989, vol. 44, pp.

on November 15, 2011

Timeline to Court Case

- On October 20, 2009, Life Technologies (LTI = ABI) sent a letter to Promega asserting new interpretation of the 1996 License Agreement which would have required Promega to pay >\$50M within 60 days of demand (>20X what has previously been paid)
- During January 2010 meeting, Promega and ABI agreed to conduct audits about royalty payments
- In a February 10, 2010 letter, LTI conceded it had no documentary evidence to support its novel claim
- In a May 4, 2010 letter, LTI demanded arbitration of a supposed royalty BUT ABI had breached the 1996 agreement
- In a July 7, 2010 follow-up letter, Promega sought a declaration that LTI and ABI have willfully infringed 5 patents by selling outside permitted fields (in clinical diagnostics, clinical research, & research markets)

Trial Dates and Results

- February 6, 7, 8, 9, 10, 13, 14, 15 (2012)
- Jury verdict on February 15, 2012
- Judgment on February 23, 2012
- Promega received \$52,009,941 from Life Technologies (Applied Biosystems)

Jury Verdict on	February 15, 2012
	ATES DISTRICT COURT DISTRICT OF WISCONSIN
PROMEGA CORPORATION, Plaintiff,	SPECIAL VERDICT 10-cv-281-bbc
v. LIFE TECHNOLOGIES CORPORATION INVITROGEN IP HOLDINGS, INC. and APPLIED BIOSYSTEMS, LLC,	
Defendants.	

 Ouestion No.1: What is the total dollar amount of worldwide STR kit sales made between August 29, 2006 through the end of January 2012 by defendants Life Technologies Corporation, Invitrogen IP Holdings. Inc. and Applied Biosystems, LLC?

• Answer: \$ 707,618,247

Answer Question No. 5.

Question No. 5: What profits, if any, did plaintiff lose as a result of

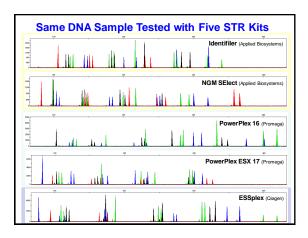
defendants' sales that you found in Question No.4?

Answer: \$ 52,009,941

Answer Question No. 7. Ouestion No. 7: Was de	:fendants' infringement willful?
	YES
	(Yes or No)
	Presiding Juron
Madison, Wisconsin Dated this <u>15</u> day of Febr	ruary, 2012

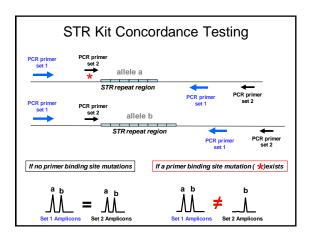

Forensic DNA Labs

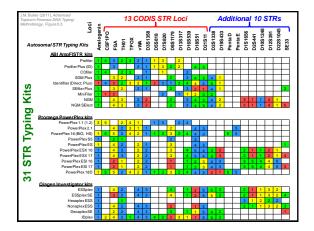
 Forensic & paternity testing DNA laboratories performing casework <u>should not be directly</u> impacted by this court ruling because ABI has a license to sell for casework applications

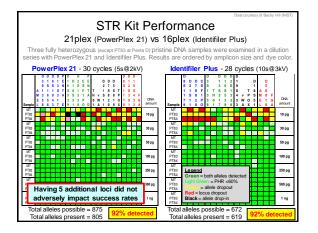

Potential Impact on NIST

- Judge has narrowly defined that only forensic labs and paternity labs may be sold ABI kits – NOT universities or other research labs
- I have spoken with lawyers from both Promega and Life Technologies (Applied Biosystems)
- The initial plan was for Promega to work with LTI/ABI to develop a permitted purchase list institution by institution
 - Promega wants to take over cell line authentication market and other clinical DNA applications
- Purchase of ABI STR kits for forensic research and training may not be permitted in the future
- Both companies would like to keep their customers happy...

New STR Kits






STR Kit Concordance Testing

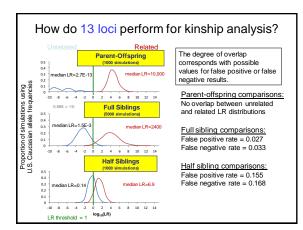
- Many of these STR kits have different primer sequences for amplifying the same STR locus
- Need to analyze the same DNA samples with different STR typing kits looking for differences
- In some rare cases, allele dropout may occur due to mutations in primer binding regions

		•	ons Sea Site Mu		
Kits compared S	Samples L	oci compared	Comparisons #	Differences	Concordance (%)
SGM-ID	1436	11	15,796	1	99.994
ID-ProPlus	1427	10	14,270	1	99.993
ID-IDplex	669	16	10,704	19	99.822
ID-PP16	662	14	9,268	4	99.957
ID-MiniFiler	1308	9	11,772	27	99.771
SGM-NGM	1436	11	15,796	4	99.975
ID-NGM	1449	4001			
ProPlus-NGM	1427	128 K	it-to-kit	compa	arisons
SGM-ESI	1436	4 404 0			
ProPlus-ESX	1427	1,104,0	J31 allel	e com	parisons
ESI-ESX	1455	4004	differen		o o much
ESI-ESSplex	1445	1224	umeren	ces or	served
ESX-ESSplex	1445		9.9% co	ncord	anco
ESI-NGMSElect	715	-			
		<u>(n</u>	nany corr	rected r	10W)
Kits (except I	Identifile	r) were kindl	y provided by	Applied E	Biosystems,
Promega, a	and Qia	gen for conc	ordance testi	ng perform	ed at NIST

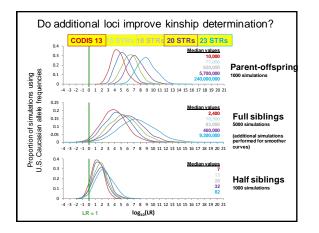
TR Marker Combinations	RMP*	1 in	
13 CODIS STRs	6.0E-16	1.7E+15	7
15 STRs (+D2S1338, D19S433)	7.3E-19	1.4E+18	mp
18 STRs (+D2S441, D10S1248, D22S1045)	4.9E-22	2.0E+21	ovemen
20 STRs (+D1S1656, D12S391)	2.8E-25	3.6E+24	ent
23 STRs (+SE33, Penta D, Penta E)	1.2E-30	8.4E+29 <	L

More Loci are Useful in Situations Involving Relatives

- **Missing Persons** and Disaster Victim Identification (kinship analysis)
- Immigration Testing (often limited references)
 Recommendations for 25 STR loci
- Deficient Parentage Testing
 often needed if only one parent and child are tested

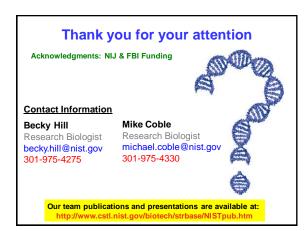

Relationship testing labs are being pushed to answer more difficult genetic questions...and we want to make sure the right tools are in place

In February 25, 2011 issue of Forensic Science International... Ret: Strue International Contents lats wellde at ScienceOren Contents lats wellde at Science


Examples of kinship analysis where Profiler Plus^{™M} was not discriminatory enough for the identification of victims using DNA identification[®] D. Hartman^{3,3,4}, L Benton^{*}, L Morenos^{*}, J. Beyer^{*}, M. Spiden^{*}, A. Stock^{*} ^{**}

Disaster victim identification from the 2009 Victorian bushfires relied on DNA (82% involved kinship associations rather than direct matching)

They advocate additional autosomal STR loci to aid kinship associations



Summary

- Additional autosomal STR loci exist in new STR kits and are being studied at NIST in U.S. population sample sets
- To avoid potential adventitious matches with large DNA databases, enable greater international data sharing, and aid missing persons applications, it is highly likely that additional loci will be added to the U.S. core in the future

